Bland-Altman plots are widely used to assess the agreement between two instruments or two measurement techniques. Bland-Altman plots identify systematic differences between measures (i.e. fixed pre-stress) or potential outliers. The average difference is the estimated distortion, and the SD of the differences measures random fluctuations around this average. If the average value of the difference based on a 1-sample-t test deviates significantly from 0, this means the presence of a solid distortion. If there is a consistent distortion, it can be adjusted by subtracting the average difference from the new method. It is customary to calculate compliance limits of 95% for each comparison (average difference ± 1.96 standard deviation of the difference), which tells us how much the measurements were more likely in two methods for most people. If the differences in the average± 1.96 SD are not clinically important, the two methods can be interchangeable. The 95% agreement limits can be unreliable estimates of population parameters, especially for small sampling sizes, so it is important to calculate confidence intervals for 95% compliance limits when comparing methods or evaluating repeatability. This can be done by the approximate Bland and Altman method [3] or by more precise methods. [6] A Bland-Altman plot (differential diagram) in analytical chemistry or biomedicine is a method of data representation used in the analysis of concordance between two different trials.

It is identical to a tube of average difference Tukey,[1] the name under which it is known in other areas, but it was popularized in the medical statistics of J. Martin Bland and Douglas G. Altman. [2] [3] To compare Bland Altman measurement systems, the differences between the measurements of the two different measurement systems are calculated and then calculated on the average and the standard deviation. The 95% of “agreement limits” are calculated as the average of the two values minus and plus 1.96 standard deviation. This 95 per cent agreement limit should include the difference between the two measurement systems for 95 per cent of future measurement pairs. Bland and Altman indicate that two measurement methods developed to measure the same parameter (or property) should have a good correlation when a group of samples is selected so that the property to be determined varies considerably. Therefore, a high correlation for two methods of measuring the same property could in itself be only a sign that a widely used sample has been chosen.

A high correlation does not necessarily mean that there is a good agreement between the two methods. Bland-Altman parcels were also used to investigate a possible link between the differences between the measurements and the actual value (i.e. proportional distortion). The existence of proportional distortion indicates that the methods do not uniformly correspond to the range of measures (i.e., the limits of compliance depend on the actual measure). To formally assess this relationship, the difference between methods should be reduced to the average of the two methods. If a relationship between differences and actual value has been identified (i.e. a significant slope of the regression line), 95% regression-based agreements should be indicated. [4] Myles – Cui. Use of the Bland-Altman method to measure compliance with repeated measurements.

BJA: British Journal of Anaesthesia, Volume 99, issue 3, 1 September 2007, pages 309-311, doi.org/10.1093/bja/aem214. For academic.oup.com/bja/article/99/3/309/355972 consulted on 23 April 2018 The limits of the agreement approach were introduced in 1983 by English statisticians Martin Bland and Douglas Altman. The method became popular after the authors` 1986 article in The Lancet. This second article is one of the most cited statistical articles, which has been cited more than 30,000 times. Consider an example consisting of n-Displaystyle n-Observations (z.B. objects of unknown volume).